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ABSTRACT 

 

Deep learning has revolutionized computer vision and 

natural language processing with various algorithms scaled 

using high-performance computing.  At the NASA Marshall 

Space Flight Center (MSFC), the Data Science and 

Informatics Group (DSIG) has been using deep learning for a 

variety of Earth science applications.  This paper provides 

examples of the applications and also addresses some of the 

challenges that were encountered.   
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1. INTRODUCTION 
 

Deep learning is a subfield of machine learning that 

includes algorithms inspired by the function of the brain.  It 

consists of multilayer neural network of neurons (simple 

computational units). The lower layers learn low-level 

features, such as edges, and then the higher layers 

progressively learn high-level representations, such as 

complex shapes, followed by object parts [1]. The first layer 

is composed of the inputs to the neural network, followed by 

one or more hidden layers, with the last layer containing the 

outputs of the network. The difference between a traditional 

neural network and deep learning is that deep learning 

receives a set of inputs and performs progressively complex 

calculations to output a solution. In this hierarchical layout, 

each layer receives input from the output of the previous 

layer, breaking down complex patterns into a series of 

simpler patterns.  Deep learning algorithms have proven to be 

a powerful tool for various machine learning problems.  

Unlike traditional approach of domain experts engineering 

hand-crafted features, deep learning algorithms learns the 

features without the need for feature engineering to solve the 

same problems.  Here, we present use of deep learning to 

address several outstanding Earth science problems.  Each 

application is unique and presents challenges: mainly to 

construct features from data, the algorithms require large 

amount of labeled training data.  

There are many cases in industry where deep learning has 

scaled successfully.  For example: Facebook translates about 

2 billion user posts per day in more than 40 languages.  

Microsoft products such as Bing and Xbox uses deep learning 

for speech-recognition.  Google uses deep learning for almost 

all of its services.  In medical science, deep learning is used 

for diagnosis and language translation. Self-driving cars are 

the latest advancements driven by deep learning.  One thing 

that is in common with all of these applications is that large 

amount of training data exists.   We highlight and address this 

challenge for Earth science applications.  

 

2. EARTH SCIENCE APPLICATIONS 
 

In this section, we discuss our deep learning-based 

applications for Earth science.   

 

2.1. Earth Science Phenomena Detection 

 

Researchers typically use event (an instance of a 

phenomenon) data for case study analysis. Earth science data 

search systems are currently limited to specifying a query 

parameter that includes space and time of an event. This is a 

current limitation that results in researchers spending a 

considerable amount of time sorting through data to study an 

event. An alternative search paradigm is to use browse 

images-based search. Before search based on images can be 

performed, the images in the Earth science database need to 

be classified. For most Earth science data, data archives also 

distribute corresponding browse images, which are much 

smaller in size compared to actual data files and include 

rendering of the data values.  The DSIG team applied the 

Convolutional Neural Networks CNNs [2][3] to classify 

images in Earth science database to improve the search 

experience for event study [4].  The training dataset for the 

application was constructed using the NASA’s Land, 

Atmosphere Near real-time Capability for EOS (LANCE) 

rapid response which supports end users in monitoring and 

analysis of various phenomena. Domain experts also labeled 

images to further increase the size of training dataset.  Sample 

labeled images of few phenomena are shown Figure 1. 

 

 
 

 



 
 

Fig 1 Sample labeled images for various phenomena: (a) hurricane, 

(b) dust storm, (c) smoke, and (d) none. 

 

 2.2. Tropical Cyclone Intensity Estimation 

 

There are inherent issues with current techniques to estimate 

wind speed of tropical cyclones that rely on the Dvorak 

technique [5].  Mainly the issues relate to human subjectivity 

and generalization.  The issues were apparent for the most 

recent hurricane Ophelia where two human experts at 

Tropical Analysis and Forecast Branch (TAFB) and 

NOAA/NESDIS Satellite Analysis Branch (SAB) differed by 

20 knots in their Dvorak analyses, and the automated version 

at the University of Wisconsin was 12 kt lower than either of 

them. The DSIG team has adapted the Convolutional Neural 

Networks (CNNs), a deep learning algorithm that is most 

suitable for computer vision tasks to address the issue of 

objectively and accurately estimating the intensity of tropical 

cyclone using satellite imageries [6]. The training dataset for 

this application was constructed by using two different 

datasets: tropical cyclone centric imageries from Naval 

Research Laboratories (http://www.nrlmry.navy.mil) and 

wind speed information from HURDAT2, the tropical 

cyclone best track renalysis data 

(http://www.nhc.noaa.gov/data/#hurdat).  Figure 2 illustrates 

a set of feature maps (outputs of convolution filters) for a 

hurricane. 

 

 
Fig. 2 CNN feature maps for a hurricane image. 

 

 

2.3. Severe Storm (Hailstorm) Detection 

 

Being able to detect hailstorm from radar imagery has 

implications to human safety and property protection.  Many 

current hailstorm detection techniques rely on domain 

knowledge and substantial preprocessing.  To avoid this 

laborious and tedious process, the DSIG team has applied a 

parameter optimized CNN for hailstorm detection with 

superior accuracy than existing techniques.  The training 

dataset was constructed by combining known instances of 

hailstorms from storms reports with corresponding 

NEXRAD images available from Iowa Environmental 

Mesonet [7] images.  Figure 3 shows correctly classified 

sample radar images with presence of hail. 

 

 
Fig. 3 An example that test images labeled as “Hail” are classified 

as “Hail” by our trained model. 

 

2.4. Earth Science Knowledge Graph Construction 

 

Published Earth science resources contain enormous amount 

of knowledge that is not easy to extract.  The DSIG team is 

attempting to accurately extract entities and relations across 

published Earth science resources and construct the Earth 

science knowledge graph that can be used to answer more 

advanced questions and discover new insights.   The approach 

taken includes deep learning methods for natural language 

processing to extract semantic entities from Earth science 

literature trained using known vocabularies and limited 

expert knowledgebase. 

 

2.4. Transverse Bands Detection 

 

Transverse cirrus bands are ice clouds that are irregularly 

spaced bandlike cirrus clouds and often form in association 

with other weather phenomena such as mesoscale convective 

systems, hurricanes, and jet streaks (Knox et al., 2010). These 

http://www.nhc.noaa.gov/data/#hurdat)


bands are known to be associated with clear air turbulence.  

Thus, automated detection of transverse cirrus bands in 

satellite imagery is of utility to aviation weather forecasting.  

The DSIG team have used CNN to detect the transverse bands 

in satellite imageries with both spectral and morphological 

information [8].  Domain expert manually created the training 

dataset for this application. 

 

2.6. Ephemeral Water Detection 

 

Ephemeral water is temporary water body formed due to 

direct response to precipitation.  Ephemeral water is 

extremely important for parts of Africa that receives very 

little precipitation.  Detecting such water body from satellite 

imageries can allow cattle farmers to direct their livestock for 

grazing.  However, detection of such water bodies is a 

difficult problem since spatially the water body may be 

represented by only a pixel or two within satellite images of 

highest resolution.  The DSIG team is attempting to solve this 

problem using stacked auto encoder on Landsat imageries.  

Training dataset was generated using water index and known 

water body shapefiles.  

 

3. ADDRESSING IDENTIFIED CHALLENGES  

 

Next, we share our lessons learned after applying deep 

learning on several outstanding Earth science problems over 

the past four years. We identified two main challenges: 

dealing with deep learning black box and creating labeled 

training datasets. 

 

 3.1. Deep Learning Black Box 

 

Even though deep learning performance for above mentioned 

applications was impressive, there is no clear understanding 

of why it performs so well, or how it could be improved.  

From a scientific point of view, it is important to bring insight 

into the internal operation and behavior of the complex 

model.  Domain scientists are skeptical of the “black box” 

that is deep learning and want to know what physical 

conditions or mechanisms contribute to a given result. They 

prefer to better understand the learned features, the 

importance of features, and how they relate to their science.   

 

To address this challenge an evaluation component that is 

geared towards understanding the physical meaning of the 

model is needed to provide a level of confidence for the 

scientists. Specifically, in the case of tropical cyclone 

intensity estimation, we developed visualization techniques 

to reveal the input pixels that are highly discriminative at any 

layer in the model.  Such visualization allow us to 

track evolution of features during training. We also applied 

deconvolution network to project the filter outputs back to 

input pixel space.   

 

 3.2. Labeled Training Data 

 

For each of the applications, constructing training datasets 

was by far the most tedious and time-consuming step. Deep 

learning algorithms can be adapted and tuned for most 

applications, however, the performance of the algorithms 

depends heavily on the size and quality of the training dataset. 

Large number of data points are needed to learn large number 

of parameters in the model that machines have to learn.  

Generic large-scale labeled datasets such as the ImageNet [8] 

are the fuel that drives the impressive accuracy of deep 

learning results. Creating large scaled labeled datasets in the 

Earth science domain is a big challenge. Manually creating 

labeled training data is a bottleneck and not scalable.  While 

there are ways to apply deep learning using limited labeled 

datasets, there is a need in the Earth sciences for creating 

large-scale labeled datasets for benchmarking and scaling 

deep learning applications.   

 

From our observations, there is an interesting almost linear 

relationship in the amount of data required and the size of the 

model. Basic reasoning is that model should be large enough 

to capture relations in your data along with specifics of your 

problem. Initial layers of the model capture high level 

relations between the different parts of the input. Later layers 

capture information that helps make the final decision; 

usually information that can help discriminate between the 

desired outputs. Since most Earth science problems are rather 

constrained (For example: satellite image classification into 

8 classes), the training dataset can be substantially smaller 

than a generic image classifier (For example: ImageNet).  

Next, we present few approaches to address the challenge of 

creating large scaled labeled dataset for Earth science. 

 

3.2.1. Data Augmentation 

Data augmentation is an artificial way of increasing the 

number of training sample with label preserving 

transformations.    Data augmentation is especially useful for 

computer vision tasks as there are several image 

transformation techniques that can be used without affecting 

the class label.  Rotation, cropping, color shifting of images 

are just a few data augmentation techniques.  All of our CNN-

based applications use some form of data augmentation. 

 

3.2.2. Transfer Learning 

Transfer learning is a method where a model developed for a 

task is reused as the starting point for a model on a different 

task.  When a model is trained (“pre-trained”) the network 

gains knowledge from training data and compiles weights of 

the network.  The weights can be extracted and then 

transferred to another network.  In this way, instead of 

training network from scratch, learned features are 

“transferred”; hence requiring smaller training dataset.  There 

are several ways to fine tune the pre-trained model for 

specific case: (a) use for feature extraction only by removing 

the output layer, (b) use the network architecture of the pre-

trained model but reinitialize the weights, and (c) use only 



few layers from the pre-trained model while retraining the 

other layers.  There are empirically validated rules depending 

on the training data size and data similarity which can help 

determine how to fine tune pre-trained model or start from 

scratch.  We successfully applied transfer learning to the 

transverse bands detection application by re-using the 

network architecture of the pre-trained model.   

 

3.2.3. Permutation Invariance 

Permutation invariance occurs when a model produces the 

same output regardless of the order of elements in the input.  

It can be used to represent data that does not have spatial 

relationship.  Thus, we can use permutation invariance for 

constructing a large dataset of related words (entities) for 

initial training set to build knowledge graph. 

 

3.2.4. Data Programming 

Data programming involves programmatic creation of 

training dataset where experts provide weak supervision 

strategies and a discriminative model to label the unlabeled 

data.  A few ways to perform weak supervision are include: 

(i) domain rules and heuristics, (ii) distant supervision: 

existing ground-truth data that is no exact fit, (iii) weak 

classifiers, and (iv) non-expert annotations or crowdsourcing.  

Consider applying data programming to create a labeled data 

for dust storm study using sample text from literature: 

“Pronounced changes in the aerosol optical parameters, 

derived from AERONET, have been observed during dust 

storms”.  If our weak supervision consists of labeling 

functions as shown in Figure 4, then we will extract the 

relevant entities to study dust storms.  Here, the 

labelingFunction1 leverages existing Earth Science 

knowledge base such as SWEET [9] and the 

labelingFunction2 applies domain heuristics. 

 

 
Fig. 4 Labeling functions used for extracting entities and relations 

from text. 

 

Recently, we have started exploring a data programming 

framework, snorkel [10], which seems promising. 

 

 

6. CONCLUSION 
 

This paper presents applications of deep learning for Earth 

science. Such applications are not without challenges that 

persist, including improving scientists' trust in the developed 

model and creating large-scaled labeled datasets.  The DSIG 

group dealt with both issues in a systematic way. We also 

present other possible approaches to address the challenges. 

Our observation suggests that the deep learning algorithms 

can be adapted and tuned to tackle Earth science problems, 

however, the value is in the large scaled labeled datasets.  We 

believe that labeled training dataset will be the barrier for 

using deep learning for Earth science. Thus, we recommend 

management of existing and future datasets in a catalog for 

curation, search and discovery, preservation.  
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